14 research outputs found

    The human eye-movement response to maintained surface galvanic vestibular stimulation

    Get PDF
    Contains fulltext : 141356.pdf (publisher's version ) (Closed access

    Automated Three-dimensional Breast US for Screening: Technique, Artifacts, and Lesion Characterization

    No full text
    Item does not contain fulltex

    Is Ultrafast or Abbreviated Breast MRI Ready for Prime Time?

    Get PDF
    Item does not contain fulltex

    Multiplanar Reconstructions of 3D Automated Breast Ultrasound Improve Lesion Differentiation by Radiologists

    No full text
    Item does not contain fulltextRATIONALE AND OBJECTIVES: To investigate the value of multiplanar reconstructions (MPRs) of automated three-dimensional (3D) breast ultrasound (ABUS) compared to transverse evaluation only, in differentiation of benign and malignant breast lesions. MATERIALS AND METHODS: Five breast radiologists evaluated ABUS scans of 96 female patients with biopsy-proven abnormalities (36 malignant and 60 benign). They classified the most suspicious lesion based on the breast imaging reporting and data system (BI-RADS) lexicon using the transverse scans only. A likelihood-of-malignancy (LOM) score (0-100) and a BI-RADS final assessment were assigned. Thereafter, the MPR was provided and readers scored the cases again. In addition, they rated the presence of spiculation and retraction in the coronal plane on a five-point scale called Spiculation and Retraction Severity Index (SRSI). Reader performance was analyzed with receiver-operating characteristics analysis. RESULTS: The area under the curve increased from 0.82 to 0.87 (P = .01) after readers were shown the reconstructed planes. The SRSI scores are highly correlated (Spearman's r) with the final LOM scores (range, r = 0.808-0.872) and DeltaLOM scores (range, r = 0.525-0.836). Readers downgraded 3%-18% of the biopsied benign lesions to BI-RADS 2 after MPR evaluation. Inter-reader agreement for SRSI was substantial (intraclass correlation coefficient, 0.617). Inter-reader agreement of the BI-RADS final assessment improved from 0.367 to 0.536 after MPRs were read. CONCLUSIONS: Full 3D evaluation of ABUS using MPR improves differentiation of breast lesions in comparison to evaluating only transverse planes. Results suggest that the added value of MPR might be related to visualization of spiculation and retraction patterns in the coronal reconstructions

    3D quantitative breast ultrasound analysis for differentiating fibroadenomas and carcinomas smaller than 1 cm

    Get PDF
    PURPOSE: In (3D) ultrasound, accurate discrimination of small solid masses is difficult, resulting in a high frequency of biopsies for benign lesions. In this study, we investigate whether 3D quantitative breast ultrasound (3DQBUS) analysis can be used for improving non-invasive discrimination between benign and malignant lesions. METHODS AND MATERIALS: 3D US studies of 112 biopsied solid breast lesions (size <1cm), were included (34 fibroadenomas and 78 invasive ductal carcinomas). The lesions were manually delineated and, based on sonographic criteria used by radiologists, 3 regions of interest were defined in 3D for analysis: ROI (ellipsoid covering the inside of the lesion), PER (peritumoural surrounding: 0.5mm around the lesion), and POS (posterior-tumoural acoustic phenomena: region below the lesion with the same size as delineated for the lesion). After automatic gain correction (AGC), the mean and standard deviation of the echo level within the regions were calculated. For the ROI and POS also the residual attenuation coefficient was estimated in decibel per cm [dB/cm]. The resulting eight features were used for classification of the lesions by a logistic regression analysis. The classification accuracy was evaluated by leave-one-out cross-validation. Receiver operating characteristic (ROC) curves were constructed to assess the performance of the classification. All lesions were delineated by two readers and results were compared to assess the effect of the manual delineation. RESULTS: The area under the ROC curve was 0.86 for both readers. At 100% sensitivity, a specificity of 26% and 50% was achieved for reader 1 and 2, respectively. Inter-reader variability in lesion delineation was marginal and did not affect the accuracy of the technique. The area under the ROC curve of 0.86 was reached for the second reader when the results of the first reader were used as training set yielding a sensitivity of 100% and a specificity of 40%. Consequently, 3DQBUS would have achieved a 40% reduction in biopsies for benign lesions for reader 2, without a decrease in sensitivity. CONCLUSION: This study shows that 3DQBUS is a promising technique to classify suspicious breast lesions as benign, potentially preventing unnecessary biopsies

    Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes

    No full text
    Item does not contain fulltextPURPOSE: To develop a set of accurate 2D models of compressed breasts undergoing mammography or breast tomosynthesis, based on objective analysis, to accurately characterize mammograms with few linearly independent parameters, and to generate novel clinically realistic paired cranio-caudal (CC) and medio-lateral oblique (MLO) views of the breast. METHODS: We seek to improve on an existing model of compressed breasts by overcoming detector size bias, removing the nipple and non-mammary tissue, pairing the CC and MLO views from a single breast, and incorporating the pectoralis major muscle contour into the model. The outer breast shapes in 931 paired CC and MLO mammograms were automatically detected with an in-house developed segmentation algorithm. From these shapes three generic models (CC-only, MLO-only, and joint CC/MLO) with linearly independent components were constructed via principal component analysis (PCA). The ability of the models to represent mammograms not used for PCA was tested via leave-one-out cross-validation, by measuring the average distance error (ADE). RESULTS: The individual models based on six components were found to depict breast shapes with accuracy (mean ADE-CC = 0.81 mm, ADE-MLO = 1.64 mm, ADE-Pectoralis = 1.61 mm), outperforming the joint CC/MLO model (P </= 0.001). The joint model based on 12 principal components contains 99.5% of the total variance of the data, and can be used to generate new clinically realistic paired CC and MLO breast shapes. This is achieved by generating random sets of 12 principal components, following the Gaussian distributions of the histograms of each component, which were obtained from the component values determined from the images in the mammography database used. CONCLUSION: Our joint CC/MLO model can successfully generate paired CC and MLO view shapes of the same simulated breast, while the individual models can be used to represent with high accuracy clinical acquired mammograms with a small set of parameters. This is the first step toward objective 3D compressed breast models, useful for dosimetry and scatter correction research, among other applications

    Sonographic Phenotypes of Molecular Subtypes of Invasive Ductal Cancer in Automated 3-D Breast Ultrasound

    No full text
    Contains fulltext : 177954.pdf (publisher's version ) (Closed access)Our aim was to investigate whether Breast Imaging Reporting and Data System-Ultrasound (BI-RADS-US) lexicon descriptors can be used as imaging biomarkers to differentiate molecular subtypes (MS) of invasive ductal carcinoma (IDC) in automated breast ultrasound (ABUS). We included 125 IDCs diagnosed between 2010 and 2014 and imaged with ABUS at two institutes retrospectively. IDCs were classified as luminal A or B, HER2 enriched or triple negative based on reports of histopathologic analysis of surgical specimens. Two breast radiologists characterized all IDCs using the BI-RADS-US lexicon and specific ABUS features. Univariate and multivariate analyses were performed. A multinomial logistic regression model was built to predict the MSs from the imaging characteristics. BI-RADS-US descriptor margins and the retraction phenomenon are significantly associated with MSs (both p < 0.001) in both univariate and multivariate analysis. Posterior acoustic features and spiculation pattern severity were only significantly associated in univariate analysis (p < 0.001). Luminal A IDCs tend to have more prominent retraction patterns than luminal B IDCs. HER2-enriched and triple-negative IDCs present significantly less retraction than the luminal subtypes. The mean accuracy of MS prediction was 0.406. Overall, several BI-RADS-US descriptors and the coronal retraction phenomenon and spiculation pattern are associated with MSs, but prediction of MSs on ABUS is limited
    corecore